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The symmetry of the matrix describing the rate equations for Berry intramolecular rearrangements 
is studied. It is shown that this matrix is invariant with respect to any element of a cyclic group of order 
ten which has been defined previously [9]. This property is used to obtain the relaxation times, the 
chemical normal modes and the solution of the rate equations corresponding to Berry processes. 
Other possible applications are announced. 

Die Symmetric der Matrix fOr die Kinetik der intramolekularen Berry-Umlagerung wird unter- 
sucht. Sic ist invariant gegeniiber jedem Element der friiher behandelten cyclischen Gruppe 10. Ordnung 
[9]. Damit lassen sich Relaxationszeiten, chemische Normalmode und die L6sung der zugeh6rigen 
kinetischen Gleichungen ermitteln. Auf weitere Anwendungsm6glichkeiten wird auBerdem hinge- 
wiesen. 

On ~tudie la sym6trie de la matrice qui d6crit les 6quations de vitesse pour les r6arrangements 
intramol6culaires de Berry. On montre que cette matrice est invariante pour tout 616merit d'un groupe 
cyclique d'ordre dix qui a 6t6 d6fini pr6c6demment [9]. Cette propri6t6 est utilis6e pour obtenir les 
temps de relaxation, les modes normaux chimiques et la solution des 6quations de vitesse correspondant 
aux processus de Berry. La possibilit6 d'autres applications est annonc6e. 

Introduction 

It is well-known that  five coordinate  complexes may  undergo various intra- 
molecular  rearrangements  [ 1]. Of these, the Berry [2] mechanism seems to provide 
a good  description of the isomerizat ion of these molecules, as long as the five 
ligands are not  too  different in size. The Berry mechanism has been studied 
by numerous  authors  who have discussed the main features of its topological  
[ 3 -6 ]  and matrix [7, 8] representations. More  recently, group generators associated 
to isomerizations of five coordinate  complexes have also been defined [9] .  In 
this paper we use these generators in order to derive some new properties of  
both topological  and matrix representations. As a consequence, we obtain the 
explicit solution of the rate equations corresponding to Berry processes. 

Rate Equations 

We consider five coordinate  complexes M L  5 where the five ligands L are 
identical but  distinguishable by labelling from 1 to 5. We assume that the ligands 
are at the vertices of a tr igonal bipyramid.  Under  these conditions, there are 
twenty isomers which will be numbered  according to the convent ion of Muetterties 
[1] i.e. 12, 13, 14, 15, 23, 24, 25, 34, 35, 45 and their enant iomers  denoted by 
12, etc ... 
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For the moment, we assume that the only mechanism of intramolecular 
rearrangement is the Berry pseudo-rotation. This process may be visualized as 
the simultaneous motion of two equatorial ligands to apical positions and of 
the two apical ligands to equatorial ones. The third equatorial ligand - the 
pivot - remains fixed. As we have three possible choices for the pivot, three 
different isomers may be reached from a given one. This pseudo-rotation proceeds 
through a transition state of tetragonal pyramidal form. 

The time evolution of the concentrations C~ (of isomer i) is governed by the 
set of twenty coupled differential equations: 

d C i 
d t  = x(C, + C~ + C, , ) -  3tcCi, (1) 

where C,, C z and Cm represent the concentrations of the three isomers which 
may be reached from i in one Berry step. In our simplified description, the rate 
constant x is the same for each Berry step. This is consistent with the approximation 
that the five ligands are identical which implies that the isolated molecule is 
characterized by two energies: one for the trigonal bipyramids and one for the 
tetragonal pyramids (transition state). 

To write down explicitely the set of differential Eqs. (1), one may use the 
topological graphs which have been elaborated previously for Berry pseudo- 
rotation [3-6]. For example, Fig. 1 shows a three-dimensional graph proposed 
by Gielen and Nasielski. 

An alternative way of representing the isomerizations is provided by matrix 
formulation. This type of representation has already been described in the litera- 
ture [7, 8] and it may of course be used as a compact way of writing the set of 
Eqs. (1). To make it more precise, let us introduce some notations 1. 

The composition of the system is characterized by twenty concentrations. 
Thus, a vector space of dimension twenty i" needed for its mathematical des- 
cription. The basis of the representation consists of twenty orthonormal column 
vectors ei(1 < i <  20) with twenty rows. Each row of e; is zero except the row i 

fZ 19 

24 

Fig. 1. A graph for Berry steps 

1 Details about matrix formulation in chemical kinetics may be found in many textbooks [10]. 
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which is the unity. The compos i t ion  vector  C will be writ ten: 

2 0  

C =  ~ C i e  i (2) 
i = 1  

and is also a co lumn vector. We choose to associate the values 1, 2 . . . .  20 of 
index i respectively to the isomers.  

12, 34, 13, 25, 35, 14, 45, 23, 24, 15, 12, 34, 13, 25, 35, 14, 45, 23, 24, 15. (3) 

The  reason  for this choice will become  clear in the following. 
In  this nota t ion,  the set (1) reads:  

d C  
- -  = ~c [ a  - 3 E l .  C ,  (4) 

d t  

where E is the unit  matr ix  of d imension  twenty and the matr ix  A is, apar t  f rom 
the order  of the rows and  columns,  the same as the matr ix  for Berry pseudo-  
ro ta t ion  which is found in the l i terature [8], i. e.: 

A =  

. . . . . . . . . . .  a 1 . b 1 . b ~ .  
t ! 

. . . . . . . . . .  a 6 . c I . . . . .  C l c  
, r 

. . . . . . . . . . . . .  a7 �9 b7 blo. 
t t  

. . . . . . . . . . .  C 6 a 2 . C 7 . . . .  

. . . . . . . . . .  b;  . . . .  a3 �9 b3 �9 
t !  

. . . . . . . . . . . . .  C 2 a 8 . c 3 . 

. . . . . . . . . .  b 9 . b~ . . . .  a 9 . 

t t  
. . . . . . . . . . . . . . .  C 8 a 4 . c 9 

. . . . . . . . . . . .  b 5 . b~ . . . .  a5 
y t  

. . . . . . . . . . .  c 5  . . . . .  c 4 a l o .  

a 6 . b 6 . b ;  . . . . . . . . . . . . .  

a l  �9 c 6  . . . . .  c ;  . . . . . . . . . .  

a 2 . b 2 . b ;  . . . . . . . . . . .  
t !  

c l  a 7  . c 2  . . . . . . . . . . . . . .  

b~  . . . .  a 8 . b s . . . . . . . . . . .  
t !  

C 7 a 3  . c 8 . . . . . . . . . . . .  

b 4 . b ~  . . . .  a 4 . . . . . . . . . . . .  
t !  

C3 a 9  �9 r  . . . . . . . . . .  

b l o .  b ;  . . . .  a l o  . . . . . . . . . .  
t t  

C l O  . . . . .  c 9 a  5 . . . . . . . . . . .  

(5) 

t t ! where the constants  av, by, cp, a p ,  b p ,  c p  (1 = p < 10) have to be put  equal to one. 
For  the moment ,  we use different symbols  for further reference. 

6 Theoret .  chim. Ac ta  (Berl,) Vol. 21 
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We are now in a position to study the symmetry properties of matrix A and to 
use them to solve the rate Eqs. (1). This program will be accomplished in the 
next sections. 

Symmetry of the Matrix A 

In a previous paper [9], the relation between stereoisomerism of five-coordinate 
complexes and the cyclic group of order ten has been stressed. Let us study 
the symmetry of the matrix A in connection with the generators Q and I of this 
group, defined in the following way. The operator I is the geometrical inversion 
about the centre of the trigonal bipyramid. It transforms any isomer into its 
enantiomer. The operator Q is a cyclic permutation of order five on the five 
ligands. Let us choose Q =  (13542) where the symbol ( d i d  2 . . .  d,,) represents the 
operation of replacing each letter in the symbol by the one which follows it 2. 
The powers of Q are readily calculated [11]: Qz=(15234),  Qa=(14325), 
Q4 = (12453), Q5 = 1. The operators Q and I commute and their product R = Q I  
is a generator for the cyclic group of order ten: this group contains the ten elements 
S = RP(1 =< p __< 10). 

Let us examine the chemical significance of these operators. Acting on isomer 
12, the powers of Q give respectively 13, 35, 45, 24 and the action of I generates 
the five corresponding enantiomers. In the same way, the action of Q and its 
powers on one of the isomers which has not yet been touched, say 34, gives 
25, 14, 23, 1~. It is seen that Q divides the isomers in four families I, I, II and I-I. 
Family I contains the isomers 12, 13, 35, 45, 27, II contains 34, 25, 14, 23 and 1~; 

and I-I denote the families of the enantiomers of families I and II 3. 
It is easy to draw the matrix R corresponding to the generator R: we have 

only to calculate, for each i, 

R e i  = eR(i), (6) 

where R(/) is the index of the isomer generated by R starting from the isomer 
of index i. For  example, if i =  1 (isomer 12), R( i )  corresponds to isomer 13. The 
matrix elements Rj~ are then obtained by performing the scalar products e j .  R e i .  
One gets: 

Rji  = e; . R e i  = ej . eR( 0 = 6j, R~o (7) 

because of the orthonormali ty of the vectors e i. In Eq. (7) we used the Kronecker 
6j~ symbol which is one if j = i and zero otherwise. The explicit form of matrix 
R is given below. 

2 For convenience, this Q is not the permutation used earlier [9] but the structure of the two 
groups is of course the same. 

3 It must be noted that the same permutation Q may perform different chemical operations. 
In this case Q is the twist of one apical and two equatorial ligands for family I but for family II it 
corresponds to a process which gives the enantiomer of a Berry step (respectively processes 4 and 5 
described earlier [1]). 
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. . . . . . . . . .  �9 . . . . . . .  1 . 

. . . . . . . . . . . . . . . . . . .  

. . . . . . . . . .  . . . . . . . . .  

. . . . . . . . . . . .  . . . . . . .  

. . . . . . . . . . . . .  . . . . . .  

. . . . . . . . . . . . . .  . . . . .  

. . . . . . . . . . . . . . .  . . . .  

. . . . . . . . . . . . . . . .  o , . 

g . . . . . . . . . . . . . . . . . .  1 . .  (8) 
. . . . . . . .  . . . . . . . . . . .  

. . . . . . . . .  . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . .  

. . . .  . . . . . . . . .  . . . . . .  

. . . . .  . . . . . . . . . . . . . .  

. . . . . .  . . . . . . . . . . . . .  

. . . . . . .  . . . . . . . . . . . .  

It is necessary now to study the relation between A and R. To do this we calculate 
R - 1 A R = B .  Using Eq. (7), one gets for Bij: 

2 0  2 0  2 0  

Bij-~ ~ (R-1)ik AklRtj : ~ ~i,R-l(k)Akl~l,R(j) = ~_~ f~k,R(i)Aklt~l,R(i)=AR(i),R(j) �9 
k,l=l k,l=l k,l=l 

This means that the transform B of A is obtained by performing the operation 
R on the subscripts of A. 

If we examine the matrix A (see Eq.(5)), we remark that A R t i ) , R ~ j ) = A i j  if 
! ! ! 

ap = ap = b ,  = b p -~ cp  : c p : 1. In f a c t ,  A s ( i ) , s ( j  ) : A i j  ifS is any element RP(1 < p  < 10) 
of the cyclic group. This is illustrated in Eq. (5) where the effect of R on the matrix 
elements of A transforms a 1 successively into a 2 . . . .  a k . . .  a~o. The same is true 
starting from a~, b~, b~, c~ and c~. Since all these symbols must be put equal to 
one, we have indeed: 

S - 1 A S = A  

which means that the matrix for Berry processes is invariant with respect to any 
element S of the cyclic group of order 10. This is easy to verify explicitely from 
Eqs. (5) and (8). 

Eigenvalues and Eigenfunctions 

This result may be used for diagonalizing the matrix A because of a theorem 
of group theory which may be stated as follows: if a matrix (here A) is invariant 
under any element of a group (here the cyclic group of order ten), then the matrix 
is block-diagonal in the irreducible representations of the group. The dimension 
of the block corresponding to a given irreducible representation M is at most 
6 *  
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M =  

the product of the dimension of this representation by the number of times 
9u it occurs in the considered reducible representation of the group 4. 

The irreducible representations of the group are, in our case, one-dimensional 
because the group is commutative. If we want to diagonalize R, we need its 
twenty eigenvectors #~(1 < j  < 20): 

R. @j = 2 i ~ j .  

It is easy to verify that each column of the matrix M, 

10/ 

(9) 

1 
1 1 

1 1 

1 1 

1 1 

1 1 

1 - 1  

1 - 1  

1 . - 1  
- 1  

1 . - 1  
- 1  

1 . - 1  
28 

1 1 1 

1 
8 8 8 2 

8 
82 82 84 

62 82 

6 3 8 3 8 

8 3 8 3 

84 8 g 83 

6 4 8 4 

- 1  

1 - 1  
8 - -8  g 2 

8 - -8  
6 2 __6 2 8 4 

82 --82 

83 - -8  3 6 

8 3 - -8  3 

8 4 __8 4 8 3 

8 ~ --84 

1 
1 

82 

82 

84 

84 

g 

8 8 

83 

83 63 

- 1  

1 - 1  
__82 

82 __82 

__ 84  . 

84 __ 84 

- -8  

8 - -8  
--83 . 

83 -- 83 

1 

83 

82 

8 

8 4 

8 4 

82 

1 

E 3 

/3 

84 

82 

1 1 1 

83 

8 3 83 

8 

8 8 
g 4 

84 84 

8 2 

g 2 82 

- 1  

--g 3 

g 3 --83 

- -8  

8 - -8  
__ 84. 

84 _ _  84 

--82 

82 - -  82 

84. g 4 

84 84. 

83 g 3 

83 83 

82 82 

82 ~2 

8 8 

8 g 

1 - 1  

- 1  
84 __84 

84 _ _  84 

83 --83 

83 _ _  83 

82 --82 

82 __82 

8 - -g  

(m) 

i T �9 where a =- e , is an eigenvector of R. Moreover, the eigenvectors are orthogonal 
to each other and have been normalized by the factor (1/10)L Therefore, M is 
unitary, and its inverse M -1 is merely its adjoint. The product I ~ = M  -1 . R . M  
is readily calculated. Of course 1~ is diagonal and its eigenvalues are respectively: 

1, 1, - -1 ,  - -1 ,84 ,84 ,  _84 ,  _84 ,83 ,83 ,  _ 8 3  _ 8 3 8 2 , 8 2 ,  _82 ,  _82 ,8 ,8 ,  --8, - - 8 .  (11) 

It is seen that each eigenvalue appears twice. This arises from the fact that the 
twenty dimensional matrix R contains twice each of the ten one-dimensional 
irreducible representations of the cyclic group of order ten (once for families I 
and i,  once for families II and H). Hence, if we had constructed the ten matrices 
S of dimension twenty we would have obtained a reducible representation of 
the cyclic group of order ten where each of the ten one-dimensional irreducible 

4 This procedure  is a n a l o g o u s  to n o r m a l - m o d e  analys is  in mo lecu lar  v ibrat ions  [12].  Deta i l s  
and  demons t ra t ions  of  the results wh ich  are cited here  can  be found e lsewhere  [13, 14]. 
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representations would have occurred twice. From this we conclude that in the 
representation (9) the matrix A is block diagonal and that each block is of dimension 
two. In other words, the matrix 

~[= M -1. A. M (12) 

has ten blocks of dimension two along its main diagonal. 
The matrix A may indeed be calculated explicitely from Eqs. (5) and (10). 

Its ten blocks are respectively: 

(~ fl),(--7 21,3) (13) 

where one has: - 1 - V ~ 

/~=~+g*- 

2 
(14) 

- 1 + 

It is now an easy matter to obtain the eigenvalues and the eigenfunctions of 
A from the eigenvalues and eigenfunctions of the blocks (13): the first block 
has the eigenvalues 1 and 3 and the third block gives - 2  and again 1. The eigen- 
values of the other blocks are the same or differ merely by their sign. Because 

1 1 
u = ~ {~/il + ~Ii2} 3 ~& = ~ -  {~1 - ~2} 1 

1 1 

1 1 
~,,= ~ {a~5+(1-~)a~6} 1 ~6= ~ {a~5-(2+~)a~} - 2  

1 1 
lP7= ~ 3 ~  {~7+(1-=)@s} - 1  ~s 3 ( 2 ] / / ~  {~7-(2+c~)~8} 2 

1 1 
,pg- ~ {a~9+(Z+=)aho } 1 ~,,o = ~ ( a ~ 9 - O - ~ ) a h o  } - 2  

1 1 
lpll= 3 ( 2 ~  {~1i+(2+=)~I~12} - 1  ip12- ~ {@n-(1-cO~12} 2 

1 1 
~P,3 3 ( 2 ~  {@i3+(2+c~)~i4} 1 ~i* ~ { ~ l a - ( 1 - ~ z ) ~ l ,  } - 2  

1 1 
1/015= r ~ ( ~ - - )  {~*,+(2+~)~1~16 } --1 !&6 - -  ~ {~,5--(1--~)~,6} 2 

1 1 
~pl,= ~ {~lll7+(1--e)~t8 } 1 ~P,s = ~ {~tT-(2+cO~,s}  - 2  

1 1 
u = , ~  {~J~t9+(1--~)~2o} --1 u , ~,~/wTw=~-,, {~J~it9--(2+e)s 2 

g a t t - ~  Va tZ+~  
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of the structure of.4, see (13), the eigenfunctions of A will each be a linear combi- 
nation of two consecutive columns 4ij of M. They mix a vector of one subspace 
(families I + I) with a vector of the other subspace (families II + H). The explicit 
form of the twenty normalized eigenvectors lp~ and the corresponding eigenvalues 
of A are given in the next table where the vectors belonging to the same irreducible 
representation of the cyclic group of order ten have been written on the same line. 

T i m e  E v o l u t i o n  

Let us now construct the matrix N whose twenty columns are the eigenvectors 
~p~ with their index s in the natural order. By definition of ~,, we write: 

N -1C = 7, (15) 

where N-1 is again equal to the adjoint of N because N is unitary. Multiplying (4) 
from the left by N -I ,  we get: 

d7 
d t  = x N - I  [A - 3E] NT, (16) 

where the matrix N-  a [A - 3 E-J N = H is now a diagonal matrix whose elements 
h~ are obtained from the eigenvalues of A by subtracting a term 3. The result is 
given below. 

Value  of S 1 8 , 1 2 , 1 6 , 2 0  2 , 5 , 9 , 1 3 , 1 7  4 , 7 , 1 1 , 1 5 , 1 9  6 , 1 0 , 1 4 , 1 8  3 

Value  of hs 0 - 1 - 2 - 4 - 5 - 6 
Degene racy  1 4 5 5 4 1 

As it is expected, the eigenvalues are real and non positive [-15]. 
Because of the diagonal form of H, the system of twenty coupled Eqs. (1) 

is now replaced by twenty uncoupled differential equations 

d3--L~ = xh~Ts (17) 
d t  

whose solution is 
_ o ,,h~t ( 18 )  

7s - -  7s e 

and where 7 ~ is the value of 7~ at t = 0. The Eqs. (17) and (18) are the separate 
equations for the evolution of the chemical "normal-modes" 7, corresponding 
to Berry processes. The explicit form of a "normal-mode" 7s is obtained from (15) 
by performing the scalar product of the s-th line of N-  1, i. e. the row vector whose 
dements are the complex conjugate of lp~, by the column vector C of (2). Some 
complex coefficients appear in this operation, which have no physical meaning. 
As usually, they may be eliminated by noting that any linear combination of 
eigenvectors with the same eigenvalue is also an dgenvector. For example, the 
four complex eigenvectors u 1P14,1P18 belonging to the eigenvalue h~ = - 5  
may be replaced by 1/) 6 -[- 1~18, lpl 0 + 1P14, i ( lP6 - -  lp18)  , i0pl0 - 1p14 ) which give 
normal modes with only real coefficients. 

The first normal mode 71 is the sum of the twenty concentrations which 
evolves with zero relaxation time because of the required conservation of the 
total mass of the system. 
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We write now the Eq. (18) in matrix form: 

= o( t )  ?0, 

where O(t) is a diagonal matrix whose elements are e +hs'. By multiplying by 
N, one gets: 

C = P(t)  C O , (19) 
where one has put 

P(t)  = N O ( t )  N - ~ . (20) 

These two last equations give the explicit solution of the kinetic equations in 
the approximation we have considered: the knowledge of the matrix P(t)  makes 
it possible to deduce the concentration of any isomer at time t from the concen- 
trations of all of them at time zero. 

Of course, the matrix P(t)  may be calculated through (20) because N and 
O(t)  are known explicitely. In this calculation, a simplification occurs: the fact 
that each isomer plays the same role allows us to evaluate only the first row 
plk(t) of P(t)  which gives the concentration C~(t) of isomer 12 as a function of 
the concentrations of all the isomers at time zero: 

2O 

Ca(t) = Z Pat(t) C~ , (21) 
k = l  

where k refers to isomers in the way indicated by (3). If one wants Ci(t ) with i 
corresponding e.g. to isomer (13), one has not to change the values of the P~k 
but merely to associate to k other isomers than those given by (3) (see Fig. 1). 

Even with this simplification, the calculation of Pax remains lengthy and we 
only give the results. In the following equations, the indices 1 and k have been 
replaced explicitely by isomer names (between brackets). 

C 0 2)(t) = P.(t)  C~2 ) + Pb(t) o o [ c ~  + Cc35) + C ~ ) ]  + P~(O o o 
0 0 0 + c~,  + c~rs)+ c~)] + P.(t) [c~, + c~)+ c~)+ c~)+ c~,~)+ c~)l 

+ P~(t) [C~34) + o o C(Ss) + C(45)] + PI(t)  C ~ )  (22) 
where: 

~0-0 (1 + 4 e + 5 e + 5 e + 4e + e 6~,) 21tt 41r I 5xt 

~-0(3 + 8 e - ~ t +  8 e - 3 e  -6~t) 5 e -  2Xt 5 e - 4 ~ t _  5rt 

eo(o = 

Pb(O = 

Pc(O = 

P.(t) = 

Pe(O = 

Pe(O = 

-0(3 + 2 e-~t _ 5 e- 2rt - -  5 e- 4~t + 2 e- 5~t + 3 e- 6~t) 

-- 2e-~t _ 5 e- 2rt .q_ 5e- 4~t + 2e-  5rt _ 3 e -  6Kt) 

_ 8e-~t + 5e-Z~t_ t_ 5 e - 4 ~ t  8e-5rtq_ 3e- 6rt) 

- 4e  - ' t  + 5e -2Kt - 5 e - 4 r t - - }  - 4 e -  s~t _ e - 6 n t ) .  

(23) 
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In these equations, one has put: 

e~(t) = P(I 2)(, 2) 

Pb(t) = P(1 z)(34) = P(1 z)(35) = P(1 :)(~) (24) 

P~(O = P(12)(i3)= P(12)(23)-- P(12)(14)= P(12)(~)= P(12)(i3)= P(lz)(2s) 

and similar relations for Pd, Pc, Pf (the isomer of the second parenthese is replaced 
by its enantiomer). The coefficients Pa, Pb... Py indicate how the concentration 
of isomer (12) at time t depends on the initial concentration of the isomers which 
may be reached from (12) through 0, 1, 2, 3, 4, 5 Berry steps respectively. The 
equalities (24) express the fact that this kinetic scheme does not distinguish the 
isomers which may be reached from a given one in the same (minimum) number 
of steps. This is also the reason why there are six relaxation times. 

The expressions (23) must satisfy the two following tests: a)for t = 0  P,(t) 
should be i and the other should be zero and b) since the system is in equilibrium 
when all the concentrations are the same one should have P,(t)+Pf(t) 
+ 3(Pb(t ) + Pe(t)) + 6(Pc(t ) + Pd(t)) = 1 for arbitrary t. These conditions are readily 
verified explicitely. 

Conclusion 

It is clear that this method could also be applied to stereoisomerization of 
six coordinate complexes (for example the Bailar twist [16]) and also to the 
other stereoisomerization of five coordinate complexes [1-1. In the latter case, 
it is expected that the matrix A should have the same eigenvectors as in the Berry 
case but this remains still to be demonstrated. 

In general, the approach we have developped may be useful each time one has 
to treat chemical kinetics corresponding to polytopal rearrangements [1-1. Indeed 
in this case, one has numerous isomers of the same geometrical form and there- 
fore the matrix describing the kinetic scheme is again expected to have an high 
symmetry, at least in the approximation of identical ligands distinguishable 
by labelling. If this approximation is not valid then one has to introduce different 
rate constants for the different Berry steps and to treat them by perturbation 
techniques. Since one knows the invariance properties of the unperturbed matrix, 
the problem must be easy to solve in the present framework and will be initiated 
in a forthcoming work. 
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